

    
      
          
            
  
Welcome to Jirafs’s documentation!

[image: _images/jirafs.svg]
 [https://travis-ci.org/coddingtonbear/jirafs][image: _images/jirafs.png]
 [http://badge.fury.io/py/jirafs][image: _images/Join%20Chat.svg]
 [https://gitter.im/coddingtonbear/python-myfitnesspal]Pronounced like ‘giraffes’, but totally unrelated to wildlife, this
library lets you stay out of Jira as much as possible by letting
you edit your Jira issues as a collection of text files using an
interface inspired by git and hg.

[image: _images/readme_demo_20150719.gif]


	Getting Started
	Installation

	Working with a Jira issue

	Editing Issue Fields

	Adding, Removing or Changing Links
	Issue Links

	Remote Links





	Macros





	Migrating from 1.0

	Common Commands
	clone <source>

	preview <field name>

	submit

	commit

	pull *

	push *

	status *

	open *

	subtask <summary>

	assign [<username>]

	transition





	Advanced Commands
	fetch

	merge

	diff

	field <field name>

	setfield <field name> <value>

	match <field name> <value>

	log

	config

	plugins

	git

	debug

	search_users <term>

	create





	Configuration
	Using an untrusted HTTPS certificate

	Disabling “Save Jira Password” prompt

	Setting a Date Format for Rendered Comments





	Using Plugins
	Writing your own Plugins
	Writing Plugins

	Writing Command Plugins









	Using Macros
	Existing Macros

	Writing your own Macros





	Interesting Details
	Ignore File Format

	Directory Structure

	VIM Plugin













          

      

      

    

  

    
      
          
            
  
Getting Started


Installation

It is recommended that you install the program using pip while in a
Python 3 virtualenv;  you can install using pip by running:

pip install jirafs





After Jirafs successfully installs, you’ll have access to the jirafs
command that you can use for interacting with Jira.




Working with a Jira issue

First, you’ll need to “clone” the issue you want to work with using
Jirafs by running the following
(replacing http://my.jira.server/browse/MYISSUE-1024 with the
issue url you are concerned about):

jirafs clone http://my.jira.server/browse/MYISSUE-1024





The first time you run this command, Jirafs will ask you for a series of details
that it will use for communicating with Jira; don’t worry: although all of this
information will be stored in a plaintext file at ~/.jirafs_config, Jirafs will
not store your password unless you give it permission to do so.

Once the command runs successfully, it will have created a new folder named
after the issue you’ve cloned, and inside that folder it will place a series of
text files representing the issue’s contents in Jira as well as copies of
all attachments currently attached to the issue in Jira.

The following text files are created:


	fields.jira:  This file will show all currently-set field values
for this Jira issue (except fields written to their own files; see
description.jira below).  You can change field values here
by editing the field values in the file.  See Editing Issue Fields
for more information.


	description.jira: This file will show the issue’s current
description.  You can change the issue’s description by editing
the contents of this file.


	links.jira: This file lists all of the links associated with this
Jira issue.  You can add new links (or remove links) by adding or
removing bulleted items from this list; see Adding, Removing or Changing Links
for more information.


	comments.read_only.jira: This file shows all comments currently
posted to this issue.  Note that you cannot edit the comments in
this file.


	new_comment.jira: This file starts out empty, but if you would
like to add a new comment, you can create one by entering text
into this file.




In order to update any of the above data or upload an asset, either
make the change to a field in fields.jira, edit the issue’s
description in description.jira, write a comment into
new_comment.jira, or copy a new asset into this folder, then run:

jirafs status





to see both what changes you’ve marked as ready for being submitted
to Jira as well as which changes you have made, but not yet committed.


Note

Unlike when working with a git repository, you do not need to ‘stage’
files using a command analogous to git’s “add” command when working with
a Jira issue using Jirafs.  All uncommitted files will
automatically be included in any commit made.



Once you’re satisfied with the changes that are about to be submitted to
Jira, run:

jirafs submit






Note

jirafs submit really just runs jirafs commit followed by
jirafs push (which itself runs jirafs pull to get your
local copy up-to-date with what it saw in Jira), so although
jirafs submit is probably the path you want to take, feel
free to use the lower-level more-git-like commands if you want.



Please consider this to be just a simple overview – there are a
variety of other commands you can run to have finer-grained control
over how the issue folder is synchronized with Jira; see Common Commands
for more details.


Note

If you are a VIM user, there is a VIM Plugin  available that provides
syntax highlighting for Jira/Confluence’s wikimarkup.






Editing Issue Fields

In most cases, you can simply edit the field’s contents directly – just
make sure to indent the field contents by four spaces.

For text fields, editing field contents is as simple as typing-in a new
value, but many issue fields are are JSON dictionaries or lists that
require you to edit the data in a more-structured way.  If the data
you enter is not valid JSON, when push-ing up changes, you will
receive an error, but don’t worry – if you encounter such an error, edit
the contents to be valid JSON, commit, and push again.  You
may need to consult with Jira’s documentation to develop an understanding
of how to change these values.


Note

You don’t always need to enter values for every field in a JSON
dictionary; in some cases, Jira will infer the missing information
for you.






Adding, Removing or Changing Links

Each line of links.jira starts with a bullet (*), and although
links to other issues (in Jira terminology – “issue links”) and links
to arbitrary URLs (“remote links”) appear similar, they have slightly
different formats.


Issue Links

You can link other issues to your Jira issue by adding bulleted lines in
the following format:

* LINK TYPE: TICKET NUMBER





So, if there is an issue relationship named “blocks”, and your Jira issue
is blocked by a ticket numbered “JFS-284”, you could add a line:

* Blocks: JFS-284






Note

Both the issue relationship and ticket number are case-insensitive,
but that if you enter a relationship name that does not exist, you will
receive an error message when push-ing up your changes.  If you see
such an error message, don’t fret – just change your relationship name
to one of the suggested names, commit, and push again.






Remote Links

You can add links to arbitrary URLs by adding bulleted lines in the following
format:

* NAME: URL





If you, for example, wanted to add a link to your issue that pointed users
toward your favorite cat video, you could, for example, add a line:

* Cat scares compilation: https://www.youtube.com/watch?v=DBRgFLHra48










Macros

One of the most powerful features of Jirafs is how it can make your workflow
vastly easier if you commonly need to do things like insert tables or
graphs or charts in your issues.  There are a handful of macros available
on PyPI including:


	jirafs-csv-table [https://github.com/coddingtonbear/jirafs-csv-table]:
Makes it easy for you to include tables in your Jira issue by just
referencing a local CSV file.


	jirafs-graphviz [https://github.com/coddingtonbear/jirafs-graphviz]:
Make it easy for you to include graphviz charts generated with programs
like dot or neato into your Jira issue by typing your graph
descriptions directly into your macro content.










          

      

      

    

  

    
      
          
            
  
Migrating from 1.0

There were a lot of changes between Jirafs v1 and Jirafs v2;
so you might be under the impression that you may need to
take special care with how you migrate forward to v2.
Fortunately, though, ticket folders created with Jirafs v1
are fully-compatible with those created by Jirafs v2.
You do, though, need to make one change to how you work with jirafs:
the syntax used for macros has changed, and the macro API
has been updated and will require you to upgrade the macros
you currently use to their latest versions.

If you had a macro named list-table installed, you previously
would have used that macro by using Jira-style curly-brace syntax:

{list-table}
*
** One
** Two
* A
** B
** C
{list-table}





As of Jirafs v2, we use an xml-inspired syntax for a variety of reasons,
most importantly that it makes it easier for Jirafs to tell the
difference between when you’re intending to use Jira markup and when
you’re intending that Jirafs run a macro for you:

<jirafs:list-table>
*
** One
** Two
* A
** B
** C
</jirafs:list-table>





Otherwise, behaviors will generally be the same.





          

      

      

    

  

    
      
          
            
  
Common Commands

The following commands are sure to be commonly used.  Be sure to
check out Advanced Commands if you are curious about
less-commonly-used functionality.


Note

Commands marked with an asterisk can be ran from either an issue
folder, or from within a folder containing many issue folders.

In the latter case, the command will be ran for every subordinate
issue folder.




clone <source>

Requires a single parameter (source) indicating what to clone.

Possible forms include:


	clone http://my.jira.server/browse/MYISSUE-1024 [PATH]


	clone MYISSUE-1024 [PATH] (will use default Jira instance)




Create a new issue folder for MYISSUE-1024 (replace MYISSUE-1024 with
an actual Jira issue number), and clone the relevant issue into this folder.

Note that you may specify a full URL pointing to an issue, but if you do not
specify a full URL, your default Jira instance will be used; if you have
not yet set one, you will be asked to specify one.

Although by default, the issue will be cloned into a folder matching the name
of the issue, you may specify a path into which the issue should be cloned
by specifying an additional parameter (PATH in the example forms above).




preview <field name>

Render the content of the field named field_name via your
Jira instance’s Wiki Markup renderer.  This is useful for
helping you ensure that your wiki markup is correct.

Note that you can also access subkeys in fields containing JSON by using
a dotpath, and can render the following special fields:


	new_comment: The formatted contents of your unsubmitted
comment.


	comments: The comments for this issue.







submit

Commit outstanding changes, push them to the remote server, and pull
outstanding changes.

This is exactly equivalent to running a commit followed by a push.




commit

From within an issue folder, commits local changes and marks them for
submission to Jira next time push is run.


Note

Unlike git (but like mercurial), you do not need to stage files
by running a command analogous to git’s ‘add’ before committing.
The commit operation will automatically commit changes to all
un-committed files.






pull *

From within an issue folder, fetches remote changes from Jira and merges
the changes into your local copy.  This command is identical to running
fetch followed by merge.




push *

From within an issue folder, discovers any local changes, and pushes your
local changes to Jira.




status *

From within an issue folder, will report both any changes you have not
yet committed, as well as any changes that would take place were you to
run jirafs push.




open *

From within an issue folder, opens the current Jira issue in your
default web browser.




subtask <summary>

From within an issue folder, creates a new subtask of the current
Jira issue.




assign [<username>]

Change the assignee of the Jira issue to the username specified.
If one does not specify a username,
the assignee will be set to the currently authenticated user.




transition

From within an issue folder, allows you to transition an issue into any
state available in your workflow.

Possible forms include:


	transition: The user will be presented with state options for
selection at runtime.


	transition 10: Transition into the state with the ID of ‘10’.


	transition "closed": Transition into the state with the name
“closed”.  Note that state names are case-insensitive.





Note

Note that the options available are dependent upon the user account
used for authentication.









          

      

      

    

  

    
      
          
            
  
Advanced Commands

You will probably not have a need to use the below commands, but they
are available for adventurous users.


fetch

Fetch upstream changes from Jira, but do not apply them to your local
copy.  To apply the fetched changes to your local copy, run merge.




merge

From within an issue folder, merges previously-fetched but unmerged changes
into your local copy.




diff

From within an issue folder, will display any local changes that you have
made.




field <field name>

Write the content of the field named field name to the console.  Useful
in scripts for gathering, for example, the ticket’s summary field.

Note that you can also access subkeys in fields containing JSON by using
a dotpath, and can access the following special fields:


	new_comment: The formatted contents of your unsubmitted
comment.


	links: Returns a JSON structure representing this issue’s
links.


	fields: Returns a JSON structure representing all field
contents.







setfield <field name> <value>

Set the value of the field named field name to the value value.
This is useful for programmatically changing the status of various fields.

Note that you can also access subkeys in fields containing JSON by using
a dotpath.




match <field name> <value>

Return a status code of 0 if the field field name matches the value
value.  This is useful for allowing you to programmatically perform
certain actions on fields matching certain values – for example: moving
resolved issues into an archive folder.

As with all commands, check --help for this command; you’ll find
utilities allowing you to invert the check (for returning 0 when
the check does not match) and utilities for executing a command
when the field does not match.

Note that you can also access subkeys in fields containing JSON by using
a dotpath.




log

From within an issue folder, will print out the log file recording actions
Jirafs has performed for this ticket folder.




config

Get, set, or list configuration values.  Requires use of one of the following
sub-options:


	--get <SETTING_NAME>: Get the value of this specific parameter name.


	--set <SETTING_NAME> <VALUE>: Set the value of this specific parameter.


	--list: List all settings currently configured in the current context.
When used within an issue folder, will list this issue’s settings, but when
used outside of an issue folder, will display only global configuration.




You may also use the --global argument to ensure that configuration
changes or lists use or affect only the global configuration.




plugins

List, activate, or deactivate plugins by name.

Plugins provides several sub-options:


	--verbose: Display information about each plugin along with its name.


	--enabled-only: List only plugins that are currently enabled.


	--disabled-only: List only plugins that are available, but not currently
enabled.


	--enable=PLUGIN_NAME: Enable a plugin by name for the current issue
folder.


	--disable=PLUGIN_NAME: Disable a plugin by name for the current issue
folder.


	--global: Used with --enable or --disable above, will enable
or disable a plugin globally.  Note: per-folder settings always take
priority.







git

From within an issue folder, will provide direct access to this issue folder’s
internal git repository.  This interface is not intended for non-developer
use; please make sure you know what you’re doing before performing git
operations directly.




debug

From within an issue folder, will open up a python shell having access
to a variable named folder holding the Python object representing
the ticket folder you are currently within.




search_users <term>

Search for users matching the specified search term.  This is particularly
useful if you’re not sure what somebody’s username and you were hoping to
mention them in a ticket so they get an e-mail notification.




create

Creates a new issue.  Provides the following options:


	--summary: The summary to use for your new issue.


	--description: The description to use for your new issue.


	--issuetype: The issue type to use for your new issue (defaults
to ‘Task’).


	--project: The project key to use for your new issue.  This is
the short, capitalized string you see next to issues.  For example,
if your tickets were named something like KITTENS-12084, ‘KITTENS’
is the project key.


	--quiet: Do not prompt user to provide values interactively.




If any of the above values are not specified, the user will be prompted to
provide them interactively.







          

      

      

    

  

    
      
          
            
  
Configuration

Settings affecting all issues are set in the following files:


	~/.jirafs_config: Global configuration values affecting all issues.


	~/.jirafs_ignore: Global list of patterns to ignore completely; these
files differ from .jirafs_local below in that they will not be
tracked in the underlying git repository.
See Ignore File Format for details.


	~/.jirafs_local: Global list of patterns to ignore when looking through
issue directories for files to upload to Jira. Note that these files
will continue to be tracked in the underlying git repository.
See Ignore File Format for details.


	~/.jirafs_remote_ignore: A list of patterns to ignore when looking
through files attached to a Jira issue.  Files matching any of these
patterns will not be downloaded.  See Ignore File Format for details.




You may also add any of the below files into any issue directory (in this
example, MYISSUE-1024):


	MYISSUE-1024/.jirafs/config: Configuration overrides for this specific
issue folder.  Settings set in this file will override – for this folder
only – any values you have set in ~/.jirafs_config.


	MYISSUE-1024/.jirafs_ignore: A list of patterns to ignore completely;
these files differ from .jirafs_local below in that they will not
be tracked in the underlying git repository.
See Ignore File Format for details.


	MYISSUE-1024/.jirafs_local: A list of patterns to ignore when looking
through this specific issue directory.  This list of patterns is in
addition to patterns entered into ~/.jirafs_ignore above. Note that
these files will continue to be tracked in the underlying git
repository.  See Ignore File Format for details.


	MYISSUE-1024/.jirafs_remote_ignore: A list of patterns to ignore
when looking through files attached to this specific Jira issue.  Files
matching any of these patterns will not be downloaded.  These patterns
are in addition to the patterns entered into ~/.jirafs_remote_ignore
above.  See Ignore File Format for details.





Using an untrusted HTTPS certificate

If your Jira instance uses a self-signed certificate or you are working
in an enterprise environment having a non-standard certificate authority,
you can manually configure your Jira connection to either not verify the
certificate, or to instead use a non-standard certificate authority
certificate.


	First, find the configuration section in your ~/.jirafs_config named
after the address of your Jira server.


	Then, after the lines starting with username and password, add a
line reading verify = <VALUE> replacing <VALUE> with one of two
options:


	If your Jira instance uses a self-signed certificate: the string false.


	If your Jira instance’s certificate uses a non-standard certificate
authority, the absolute path to a place on your computer where your
certificate authority’s certificate is stored.








For example:

	1
2
3
4

	[https://jira.mycompany.org]
username = myusername
password = mypassword
verify = /path/to/certificate/or/false










Disabling “Save Jira Password” prompt

If you would never like to save your Jira password in Jirafs, you can disable
the “Save Jira Password” prompt by setting the ask_to_save setting to false in the main section of your ~/.jirafs_config file.

For example:

	1
2

	[main]
ask_to_save = false










Setting a Date Format for Rendered Comments

By default, Jirafs will render a date using the following international
date format:

%Y-%m-%d at %H:%M:%S %Z





But you can configure the format to one more familiar to you by setting the
main.date_format configuration setting using the formatting codes
described here: `https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes`_

	1
2

	[main]
date_format = %d %B %Y at %h:%M %p













          

      

      

    

  

    
      
          
            
  
Using Plugins


	Enable the plugin for a given ticket folder:

jirafs plugins --enable=my_plugin_name







	Enable the plugin globally:

jirafs plugins --global --enable=my_plugin_name











	Writing your own Plugins
	Writing Plugins

	Writing Command Plugins













          

      

      

    

  

    
      
          
            
  
Writing your own Plugins

Jirafs plugins come in two different varieties:


	“Folder Plugins” are used for altering the behavior of existing
commands when interacting with a Ticket Folder.  They can be disabled
or enabled on a per-folder basis, too.


	“Command Plugins” are used for adding new commands to Jirafs.  These
are always enabled when installed.





Note

All existing Jirafs commands (‘clone’, ‘pull’, ‘push’, etc.) are
“Command Plugins”.





	Writing Plugins
	Setuptools Entrypoint

	Folder Plugin API

	Macro Plugins

	Automatically-Reversed Macro Plugins

	Image Macros





	Writing Command Plugins
	Setuptools Entrypoint

	Plugin API

	Example Plugin













          

      

      

    

  

    
      
          
            
  
Writing Plugins

For a working example of a folder plugin, check out
Jirafs-Pandoc’s Github Repository [https://github.com/coddingtonbear/jirafs-pandoc].


Setuptools Entrypoint


	Add a setuptools entrypoint to your plugin’s setup.py:

entry_points={
  'jirafs_plugins': [
      "my_plugin_name = module.path:ClassName"
  ]
}







	Write a subclass of jirafs.plugin.Plugin implementing
one or more methods using the interface described in Folder Plugin API.







Folder Plugin API

The following properties must be defined:


	MIN_VERSION: The string version number representing the minimum version
of Jirafs that this plugin will work with.


	MAX_VERSION: The string version number representing the first version
at which your plugin would not be guaranteed to becompatible.  Note
that this means that your Jirafs version must be below this number, and
that users running a version of Jirafs matching this will see an error
message.  Note: Jirafs uses semantic versioning, so you should set this
value to the next major version about the highest version you’ve tested.





Pre/Post Command Methods

All commands (including user-installed commands) can have plugins altering
their behavior by defining pre_*COMMAND* and post_*COMMAND* methods.
For the below, please replace *COMMAND* with the command your plugin
would like to alter the behavior of.


	pre_*COMMAND*(**kwargs):


	Executed before handling *COMMAND*.  Receives (as **kwargs)
all parameters that will be passed-in to the underlying command.


	You may alter the parameters that will be passed-in to the underlying
command by returning a new or altered **kwargs dictionary.


	Return None or the original **kwargs dictionary to pass
original arguments to the command without alteration.






	post_*COMMAND*(returned):


	Executed after handling *COMMAND*.  Receives as an argument the
result returned by the underlying command.









Note

Although the return values of commands are not in the scope of this
specification, many commands return a jirafs.utils.PostStatusResponse
instance.

Such an instance is a named tuple containing two properties:


	(bool) new: Whether the command’s action had an effect on the
underlying git repository.


	(string) hash: The hash of the relevant repository branch’s head
commit following the action.









Properties

The plugin will have the following properties and methods at its disposal:


	self.ticketfolder: An instance of jirafs.ticketfolder.TicketFolder representing
the jira issue that this plugin is currently operating upon.


	self.get_configuration(): Returns a dictionary of configuration settings for this
plugin.


	self.metadata: Returns a dictionary containing metadata stored for this plugin.  This dictionary is modifyable, and will be preserved between plugin executions.







Methods


	execute_macro(data: str, attrs: Dict, config: Dict) -> str:
REQUIRED
Your macro function.  It will receive a series of parameters:


	data: The content of your macro.


	attrs: Any attributes of your macro.


	config: Jirafs config parameters.




and is expected to return a string of text that your macro will
be replaced when when sending content to Jira.



	execute_macro_reversal(data: str) -> str:
If provided, will be expected to perform the reversal of
execute_macro above.  It will receive as parameters the full
text of each field.


	cleanup(): Perform any cleanup following macro processing for
a ticket folder.  If you need more-granular control, you can define
methods for cleanup_pre_process() and cleanup_post_process()
if you need to segment your cleanup process between before and after
running macro processing methods.









Macro Plugins

Macro plugins are special kinds of folder plugins that are instead subclasses of jirafs.plugin.MacroPlugin
but same setuptools entrypoints apply as are described in Setuptools Entrypoint.

Macros can be executed using either a block element format; for example:

<jirafs:my-macro>
Some content
</jirafs:my-macro>






Note

See Reserved Attributes for more information about attributes and
the special src attribute.



or as a void element:

<jirafs:my-macro src="some_file_to_read_as_content.ext" />






Note

The trailing slash at the end of your macro is important!



Your execute_macro method is expected to return text that should be sent
to Jira instead of your macro.  Note that the method signature remains
identical to that of a block element macro, but instead of receiving
the content of the block, you will receive None.


Reserved Attributes


	src: All macro plugins can be provided in either a block or void
elements.  When using a block element version of your macro, you
provide content directly within the content of your tag.  If you
would like the content to be imported from a file instead, you
can provide the path to the file to import via the src attribute.







Attributes

Both block and void elements can receive any number of attributes; they’re
specified following the same conventions you might use for providing an HTML
tag with attributes; for example:


<jirafs:flag-image country_code=”US” size=300 alternate=True />
{flag-image:country_code=US|size=300|alternate}





	country_code: US (string)


	size: 300.0 (float)


	alternate: True (boolean)







Example Macro Plugin

The following plugin isn’t exactly useful, but it does demonstrate
the basic functionality of a plugin:

class Plugin(MacroPlugin):
    COMPONENT_NAME = 'upper-cased'

    def execute_macro(self, data, prefix='', **kwargs):
        return prefix + data.upper()





When you enter the following text into a Jira ticket field:

<jirafs:upper-cased prefix="Hello, ">my name is Adam.</jirafs:upper-cased>





the following content will be sent to Jira instead:

Hello, MY NAME IS ADAM.






Warning

Note that it’s always a good idea to make sure your execute_macro
method has a final parameter of **kwargs!  In future versions of
Jirafs, we may add more keyword arguments that will be sent automatically.








Automatically-Reversed Macro Plugins

It’s not a ton of fun to have to handle reversing your own macros; so
if your macro’s content will produce unique content for provided input,
you can use the AutomaticReversalMacroPlugin as your base class
instead of MacroPlugin.  If you do so, your macro will automatically
be reversed when returning content from Jira by scanning the content
received from Jira and replacing any output generated by your macro
during the most recent run with the macro content that generated that
output.

In general, you won’t need to make any special modifications, but there
are useful methods for overriding in special circumstances:


	should_rerender(data: str, cache_entry: Dict, config: Dict) -> bool:
Control whether this given input content (data)
should be re-rendered.  By default, should_rerender returns
True only if cache_entry is empty.  Values available in
the cache_entry dictionary include:


	filenames: A list of filenames generated by your macro while
during processing of this input text.


	attrs: Macro attributes set for your macro when running for
this input text.


	replacement: The replacement text generated by your macro
for this input text.


	is_temp: Whether or not this macro result was the result of
generating content for your current working directory (is_temp==False),
or if it was the result of processing historical content for
identifying changes (is_temp==True).








See Methods for other methods that may be necessary for
your macro.


Examples

See one of the following repositories for an example of this type of macro:


	jirafs-csv-table [https://github.com/coddingtonbear/jirafs-csv-table]









Image Macros

A particularly powerful Macro type is the “Image Macro”.  Use of a macro
of this type will allow you to automatically generate and embed images
in your Jira content by passing your macro’s contents through a tool
like Graphviz’ dot or plantuml.

In the case of this type of macro, you need to define just one method:


	get_extension_and_image_data(data: str, attrs: Dict) -> Tuple[str, bytes]:
For a given input text (data) and macro attributes (attrs),
return a 2-tuple of the file extension to use for the file to be
created, and the bytes of that file.




See Methods for other methods that may be necessary for
your macro.


Note

Unlike most subclasses of MacroPlugin, you should not define
your own execute_macro method!




Examples

See one of the following repositories for an example of this type of
macro:


	jirafs-graphviz [https://github.com/coddingtonbear/jirafs-graphviz]





Note

Image Macros are automatically reversed.











          

      

      

    

  

    
      
          
            
  
Writing Command Plugins

For a working example of a command plugin, check out
the source of Jirafs existing commands [https://github.com/coddingtonbear/jirafs/tree/1.x/jirafs/commands].


Setuptools Entrypoint


	Add a setuptools entrypoint to your plugin’s setup.py:

entry_points={
  'jirafs_commands': [
      "my_command_name = module.path:ClassName"
  ]
}







	Write a subclass of jirafs.plugin.CommandPlugin implementing
one or more methods using the interface described in Plugin API.







Plugin API

The following properties must be defined:


	MIN_VERSION: The string version number representing the minimum version
of Jirafs that this plugin will work with.


	MAX_VERSION: The string version number representing the first version
at which your plugin would not be guaranteed to becompatible.  Note
that this means that your Jirafs version must be below this number, and
that users running a version of Jirafs matching this will see an error
message.  Note: Jirafs uses semantic versioning, so you should set this
value to the next major version about the highest version you’ve tested.




The following methods may be defined to control the behavior of your
command plugin:


	handle(self, args, folder, jira, path, **kwargs): (REQUIRED)
This method (and methods called from here) is where you should write
the bulk of your plugin’s functionality.  handle receives several
keyword arguments:


	args: An instance of argparse.Namespace holding arguments
specified on the command line.  See add_arguments and
parse_arguments for details.


	folder: A jirafs.ticketfolder.TicketFolder instance
corresponding with the current path.  If you are writing a command
that does not require a ticketfolder, set an attribute on your class
named AUTOMATICALLY_INSTANTIATE_FOLDER to False (Note that
this option makes the value of TRY_SUBFOLDERS irrelevant) and
this value will always be None whether or not your command was
invoked from within a ticket folder.


	jira: A callable (accepting, optionally, the string domain
of a Jira instance) which will return an instance of jira.client.JIRA
corresponding with the domain you’ve specified, or the default Jira
connection if no Jira domain was specified.


	path: The string path from which this command was called.  This
can be used to create a jirafs.ticketfolder.TicketFolder instance
representing the current ticket folder if so desired.


	**kwargs: Keyword arguments may be added in the future; it is
extremely important that your handle method accept arbitrary
keyword arguments in order to prevent your plugin from breaking
when new keyword arguments are added in the future.






	add_arguments(self, parser): Using this method, you can add
arguments that your command requires.  Follow the guidelines in Python’s
argparse documentation for an overview of how arguments are handled.


	parser: An argparse.ArgumentParser instance.






	parse_arguments(self, parser, extra_arguments): Potentially useful
as a method to place argument validation.


	parser: An argparse.ArgumentParser instance.  Note that this
instance will have already had attached all arguments added in the
add_arguments method above.


	extra_arguments: A list of string arguments unused by Jirafs.








You may also use any of the following properties
to alter the behavior of Jirafs:


	TRY_SUBFOLDERS: Set this class property to True if this command
should be applied to all Jirafs ticket folders in subdirectories in the
event that the current folder is not a ticket folder.


	RUN_FOR_SUBTASKS: Set this class property to True if you would like
your command to be automatically executed for subtask when being executed
for a ticket having subtasks.







Example Plugin

import pydoc

from jirafs.plugin import CommandPlugin


class Command(CommandPlugin):
    """ Run a git command against this ticketfolder's underlying GIT repo """

    MIN_VERSION = "2.0.0"
    MAX_VERSION = "3.0.0"

    def handle(self, args, folder, **kwargs):
        return self.cmd(folder, *self.git_arguments)

    def parse_arguments(self, parser, extra_args):
        args, git_arguments = parser.parse_known_args(extra_args)
        self.git_arguments = git_arguments
        return args

    def main(self, folder, *git_arguments):
        result = folder.run_git_command(*git_arguments)
        pydoc.pager(result)
        return result











          

      

      

    

  

    
      
          
            
  
Using Macros

Macros are special kinds of plugins that perform simple functions for
transforming text you enter into fields into something else when
submitting them to Jira.


Existing Macros


	For including programmatically-generated images in your Jira issues without
ever leaving your editor:


	jirafs-graphviz [http://github.com/coddingtonbear/jirafs-graphviz]:
Embed Graphviz (e.g. dot or neato) graphs using Graphviz’s
ubiquitous graph description language.


	jirafs-matplotlib [http://github.com/coddingtonbear/jirafs-matplotlib]:
Embed graphs generated with the common Python charting library Matplotlib
by writing simple python scripts.


	jirafs-plantuml [http://github.com/coddingtonbear/jirafs-plantuml]:
Embed UML (e.g. timing, sequence, or activity) diagrams
generated via PlantUML’s easy-to-use text format.


	jirafs-mermaid [http://github.com/coddingtonbear/jirafs-mermaid]:
Embed beautiful diagrams (e.g. pie, gantt, or class)
using Mermaid’s markdown-ish diagram description language.






	For making tables more easily:


	jirafs-csv-table [http://github.com/coddingtonbear/jirafs-csv-table]:
Include tables in Jira by generating them from local CSV files.


	jirafs-list-table [http://github.com/coddingtonbear/jirafs-list-table]:
Create tables in Jira by using a simple list-based syntax.











Writing your own Macros

Macros are really just special kinds of plugins; you can find more information
about writing your own plugins in Macro Plugins.







          

      

      

    

  

    
      
          
            
  
Interesting Details


Ignore File Format

The files .jirafs_local, .jirafs_ignore and
.jirafs_remote_ignore use a subset
of the globbing functionality supported by git’s gitignore file
syntax.  Specifically, you can have comments, blank lines, and
globbing patterns of files that you would not like to upload.

For example, if you’d like to ignore files having a .diff extension,
and would like to add a comment indicating why those are ignored, you
could enter the following into any *_ignore file:

# Hide diffs I've generated for posting to reviewboard
*.diff








Directory Structure

Each issue folder includes a hidden folder named .jirafs that
stores metadata used by Jirafs for this issue.  There may be
many things in this folder, but two highlights include the following
files/folders:


	git: The issue folder is tracked by a git repository to enable
future features, provide for a way of easily rolling-back or reviewing
an issue’s previous state.


	operation.log: This file logs all operations engaged in on this
specific issue folder.  You can review this log to see what jirafs
has done in the past.







VIM Plugin

If you’re a vim user, I recommend you install my fork of the
confluencewiki.vim plugin [https://github.com/coddingtonbear/confluencewiki.vim];
if you do so, comment and description field files will use Jira/Confluence’s
WikiMarkup for syntax highlighting.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up.png





_images/readme_demo_20150719.gif





_static/ajax-loader.gif





_images/jirafs.png
pypi package 2.1.1





_static/comment-bright.png





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Jirafs’s documentation!
        


        		
          Getting Started
          
            		
              Installation
            


            		
              Working with a Jira issue
            


            		
              Editing Issue Fields
            


            		
              Adding, Removing or Changing Links
              
                		
                  Issue Links
                


                		
                  Remote Links
                


              


            


            		
              Macros
            


          


        


        		
          Migrating from 1.0
        


        		
          Common Commands
          
            		
              clone <source>
            


            		
              preview <field name>
            


            		
              submit
            


            		
              commit
            


            		
              pull *
            


            		
              push *
            


            		
              status *
            


            		
              open *
            


            		
              subtask <summary>
            


            		
              assign [<username>]
            


            		
              transition
            


          


        


        		
          Advanced Commands
          
            		
              fetch
            


            		
              merge
            


            		
              diff
            


            		
              field <field name>
            


            		
              setfield <field name> <value>
            


            		
              match <field name> <value>
            


            		
              log
            


            		
              config
            


            		
              plugins
            


            		
              git
            


            		
              debug
            


            		
              search_users <term>
            


            		
              create
            


          


        


        		
          Configuration
          
            		
              Using an untrusted HTTPS certificate
            


            		
              Disabling “Save Jira Password” prompt
            


            		
              Setting a Date Format for Rendered Comments
            


          


        


        		
          Using Plugins
          
            		
              Writing your own Plugins
              
                		
                  Writing Plugins
                


                		
                  Writing Command Plugins
                


              


            


          


        


        		
          Using Macros
          
            		
              Existing Macros
            


            		
              Writing your own Macros
            


          


        


        		
          Interesting Details
          
            		
              Ignore File Format
            


            		
              Directory Structure
            


            		
              VIM Plugin
            


          


        


      


    
  

_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





